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We present an exact result for the nonadiabatic transition probability and hence the defect density in the final
state of a one-dimensional Kitaev model following a slow quench of the parameter J−, which estimates the
anisotropy between the interactions, as J−�t��−�t /��. Here, time t goes from −� to +� and � defines the rate
of change in the Hamiltonian. In other words, the spin chain initially prepared in its ground state is driven by
changing J− linearly in time up to the quantum critical point, which in the model considered here occurs at t=0,
reversed and then gradually decreased to its initial value at the same rate. We have thoroughly compared the
reverse quenching with its counterpart forward quenching, i.e., J−� t /�. Our exact calculation shows that the
probability of excitations is zero for the wave vector at which the instantaneous energy gap is zero at the
critical point J−=0 as opposed to the maximum value of unity in the forward quenching. It is also shown that
the defect density in the final state following a reverse quenching, we propose here, is nearly half of the defects
generated in the forward quenching. We argue that the defects produced when the system reaches the quantum
critical point get redistributed in the wave-vector space at the final time in case of reverse quenching whereas
it keeps on increasing until the final time in the forward quenching. We study the entropy density and also the
time evolution of the diagonal entropy density in the case of the reverse quenching and compare it with the
forward case.
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I. INTRODUCTION

Studies of quantum-phase transitions in quantum many-
particle systems have always been a fascinating area of re-
search in condensed matter physics.1,2 While a plethora of
theoretical works have been performed on statics of
quantum-phase transitions, the dynamics of a quantum sys-
tem passing through a quantum critical point has caught the
attention of researchers only recently.3–27 Understanding
quantum dynamics happens to be a challenging problem as
the physics of equilibrium quantum-phase transitions gets
coupled to the nonequilibrium dynamics of correlated sys-
tems. Theoretical techniques used in studying the above dy-
namics are often borrowed from similar studies in quantum
optics, e.g., the Landau-Zener transition.28,29

The dynamical evolution can be initiated in a quantum
system either by a sudden change in a parameter in the
Hamiltonian which is called a sudden quench4 or by a slow
quenching of a parameter.5,6 The effect of the passage
through a quantum critical point is manifested in the eventual
dynamics of the system. The relaxation time ��t� of the sys-
tem, defined as the time taken by the system to come back to
its equilibrium state after a small perturbation, diverges at the
critical point as �t��−�z, where � measures the deviation
from the quantum critical point and � and z are the corre-
sponding correlation length and dynamical critical expo-
nents, respectively. The divergence of the relaxation time is
an artifact of vanishing energy gap � ���t

−1� between the
ground state and the first excited state of the Hamiltonian
near a quantum critical point. This divergence of the relax-
ation time forces the system to be infinitely sluggish near the
critical point so that it takes effectively an infinite time to
respond to any change in the external parameters thereby
causing excitations. The recent discovery of ultracold atoms
which has facilitated the experimental implementation of

various Hamiltonian models30,31 and thus the verification of
results of quantum dynamics, has enormously accelerated the
theoretical research in this field. Here, we are interested in a
slow and linear variation in the quenching parameter and
estimate various quantities such as density of defects and the
local entropy density in the final state of the system follow-
ing a quench, as a function of the quenching rate �.

It is well known that for a d-dimensional system which is
initially prepared in its ground state and is quenched through
a quantum critical point by linearly varying a parameter as
t /�, the density of defects �n� satisfies the Kibble-Zurek �KZ�
scaling5,6,15,32,33 given by n��−d�/��z+1�, where � and z are the
critical exponents defined above. The Kibble-Zurek scaling
has been verified in various exactly solvable spin
models5,7,9,12,13 and in a system of interacting bosons under-
going superfluid to insulator transitions.6 The above KZ scal-
ing relations get modified when the system is quenched
through a multicritical point,25 across a gapless phase,16,18

along a gapless line,21,23 or for quenching with a nonlinear
rate.17 Studies on quenching dynamics have also been gen-
eralized to quantum spin chains with quenched disorder,10 to
systems in presence of white noise,14 to systems with infinite
range interactions,22 to an open system coupled to a heat
bath,19 and also to quantum spin chains driven by an oscil-
latory magnetic field.26 The effect of edge states on the de-
fect production has also been studied.27 It is worth mention-
ing here that the defect production has been studied
experimentally for a rapid quench in a spin-1 Bose
condensate.34

In this paper, we study the effect of the reversal of the
quenching path right at the quantum critical point on the
density of defects. This is achieved by increasing the quench-
ing parameter from time −� to its value at the quantum criti-
cal point and then bringing it back at the same rate to its
initial value at the final time, i.e., t→�. We call this quench-
ing scheme as reverse quenching whereas the other scheme
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in which the quenching parameter is monotonically increased
from time −� to +� through a quantum critical point will be
referred to as the forward quenching scheme. We would also
occasionally use the term half quenching for the case when
the quenching is stopped at the quantum critical point.

At the outset, let us discuss the motivation behind our
study. The forward quenching scheme has been applied ex-
tensively for the entire range in time from t=−� to � and
defects generated in the final state have been estimated. In
the present work, we drive the system linearly right up to the
quantum critical point and then let it retrace its path. In our
calculation, we find that the defects generated up to time t
=0 is approximately half of the defects generated for a full
forward quenching. We also seek answer to the question that
how the defects generated in the first half of the quenching
get altered under reversal of the path. We address questions
such as do we have a similar scaling form for the defect or
how does the magnitude of the defects in the final state, i.e.,
at t→� change under reverse quenching?. In the process, we
also provide an exact solution of the Schrödinger equation to
find the nonadiabatic transition probability for the reverse
quenching.

We also compare our work with that in Ref. 20 where a
quantum XY spin chain is repeatedly swept through the
quantum critical points by varying the magnetic field at a
linear rate between −� and � such that the reversal of path
takes place far away from the critical points. In the present
work, the parameter is increased only up to the quantum
critical point where it is reversed to trace back its path. To
employ the reverse quenching scheme in an appropriate way,
we study the dynamics of a one-dimensional Kitaev model
where the quantum critical point occurs at t=0. Second, in
Ref. 20, the defect density after each repetition is estimated
using a recursive relation for the nonadiabatic transition
probabilities where the �rapidly varying� cross terms are ig-
nored because they vanish upon integration over the wave
vectors. On the other hand, we present here an exact solution
of the transition probabilities which include interference
terms although the results are in fairly good agreement at
least qualitatively with the one cycle case discussed in Ref
20. It is also to be noted that the reverse quenching dynamics
has been studied for a generic two-level system in Ref. 35
and the excitation probability has been calculated within the
framework of perturbation theory. On the other hand, we
here generalize the quenching scheme to a many-particle sys-
tem and solve the Schrödinger equations exactly.

The paper is organized in the following way: the model
and the quenching scheme are discussed in Sec. II. The main
results for the nonadiabatic transition probability, defect den-
sity and the entropy density are presented in Sec. III. We
summarize our results in the concluding section whereas the
calculational details are provided in the appendix.

II. MODEL AND THE QUENCHING SCHEME

Two-dimensional Kitaev model defined on a honeycomb
lattice described by the Hamiltonian36

H̃ = �
n+l=even

��n,l
x �n+1,l

x + J2�n−1,l
y �n,l

y + J3�n,l
z �n,l+1

z � , �1�

where n and l define the column and row indices of the
lattice, has been studied extensively due to its exact solvabil-

ity by Jordan-Wigner transformation.37 The rich phase dia-
gram of this model has a gapless phase through which the
quenching dynamics has been studied recently.16 The one-
dimensional version of the Kitaev model �with J3=0� given
by the Hamiltonian36,38

H = �
n=1

N

�J1�2n
x �2n+1

x + J2�2n−1
y �2n

y � , �2�

where n refers to the site index and exhibits a quantum-phase
transition at J1=J2. The above Hamiltonian �2�, which is the
model of interest in this work, can be exactly diagonalized
by standard Jordan-Wigner transformation37 as defined be-
low,

an = � �
j=−�

2n−1

� j
z��2n

y , bn = � �
j=−�

2n

� j
z��2n+1

x . �3�

Here an and bn are independent Majorana fermions at site
n.16 They satisfy the relations such as

an
† = an, bn

† = bn, 	am,an
 = 2�m,n,

	bm,bn
 = 2�m,n, 	am,bn
 = 0. �4�

Substituting for �n
x and �n

y in terms of Majorana fermions
followed by a Fourier transformation, Hamiltonian �2� can be
written as

H = 2i�
k=0

�

�bk
†ak�J1 + J2eik� + ak

†bk�− J1 − J2e−ik�� , �5�

where the Fourier component ak, satisfying the standard an-
ticommutation relations 	ak ,ak�

† 
=�k,k� and 	ak ,ak�
=0, is de-
fined as

an = 4

N
�
k=0

�

�ake
ikn + ak

†e−ikn� + 2

N
�a0 + a0

† + a��− 1�n

+ a�
† �− 1�n� . �6�

The sum over k in Eq. �6� goes only for half the Brillouin
zone as an�s are Majorana fermions. By defining 	k= �ak ,bk�,
the Hamiltonian �5� can then be rewritten in a simpler form
as

H = �
k=0

�

	k
†Hk	k, �7�

where

Hk = 2i� 0 − J1 − J2e−ik

J1 + J2eik 0
� . �8�

The above Hamiltonian can be diagonalized where the eigen-
values are given by
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k
� = � 2J1

2 + J2
2 + 2J1J2 cos k .

Clearly, the gap vanishes at J1= �J2 for k=� and 0, respec-
tively, with the critical exponents � and z both being equal to
unity. Feng et al.39 showed that this vanishing energy gap
signals a topological phase transition between the two phases
of the model at J1�J2 and J1J2. Interestingly, this model
can be mapped to a one-dimensional transverse Ising model
by a duality transformation.39–41

In terms of a new set of basis functions given by

	1k =
1
2

�1

i
� and 	2k =

1
2

� 1

− i
� ,

the above Hamiltonian can be recast to the form

H̃k = 2�
J+ + J−

2
+

J+ − J−

2
cos k −

J+ − J−

2
sin k

−
J+ − J−

2
sin k −

J+ + J−

2
−

J+ − J−

2
cos k� ,

�9�

where J�=J1�J2. We study the dynamics of the spin chain
by varying the term J− of Hamiltonian �9� using the quench-
ing rule J−=−� t

� �, where t varies from −� to +�. Here, the
quantum critical point occurs at t=0 and it is at this point
where the parameter J− is reversed to bring it back to its
initial value at the final time. It is to be noted that the off-
diagonal terms in the Hamiltonian �9� become time depen-
dent in the present quenching scheme making the analytical
solution difficult. However, the situation can be easily saved
by making an appropriate unitary transformation as shown
below: in the limit of large t �t→ ���, the eigenvectors of
the Hamiltonian are

�e1k� =
1

2�1 + sin�k/2��
�cos

k

2
�	2k� + �1 + sin

k

2
��	1k��

�e2k� =
1

2�1 + sin�k/2��
�− cos

k

2
�	1k� + �1 + sin

k

2
��	2k�� ,

where �e1k� is the ground state in the limit t→−�. A unitary
transformation generated by the matrix U constructed from
the above eigenvectors leads to the final Hamiltonian suit-
able for the present form of quenching and is given by

Hk� = U†H̃kU = 2�J−�t�sin�k�� J+ cos�k��
J+ cos�k�� − J−�t�sin�k�� ,

� �10�

where the time dependence is now entirely shifted to diago-
nal terms of the Hamiltonian. The quantum critical point is at
J−=0 for the mode k�=� /2. Also, the mode k� in Eq. �10� is
half of mode k in Eq. �8�. Henceforth, we will refer k� as k
and appropriately redefine the Brillouin zone. The presence
of a single quantum critical point precisely at t=0 renders the
analytical calculation easier and so we chose Kitaev model
over other exactly solved models for the present study. We
note that the results of this model can be extended to any
other Jordan-Wigner solvable models.

III. RESULTS

In this section, we shall present the main results of this
work. The 2�2 reduced Hamiltonian matrix given in Eq.
�10� can be interpreted as a Landau-Zener-Hamiltonian28,29

where the diagonal elements are the two bare �diabatic� en-
ergy levels which approach each other and the off-diagonal
element �k is the minimum gap between the instantaneous
levels of the Hamiltonian. At time t=0, the energy gap be-
tween the instantaneous energy levels vanishes for the mode
k=� /2 signaling a quantum-phase transition mentioned
above. We shall assume that the system is prepared in its
initial ground state �e1k� at t→−�. At any instant t during the
evolution, a general state vector �	k�t�� can be expressed as
�	k�t��=c1,k�t��e1k�+c2,k�t��e2k�, where ci,k�t� �i=1,2� denotes
the time-dependent probability amplitude for the bare state
�eik�.

The Schrödinger equation describing the evolution of the
system is

i
�

�t
c1,k�t� = 2J− sin�k�c1,k�t� + 2 cos�k�c2,k�t�

i
�

�t
c2,k�t� = − 2J− sin�k�c2,k�t� + 2 cos�k�c1,k�t� , �11�

with initial conditions c1,k�−��=1, c2,k�−��=0 and we have
set J+=1. The nonadiabatic transition probability in the final
state is given by �c2,k�+���2. The above Schrödinger equa-
tions are solved exactly and the probability of excitation for
the kth mode, pk, is

pk�t → �� =
1

4
�1 − e−2��� � ���1 − i�/2�

��1 + i�/2�

+ i
��1/2 − i�/2�
��1/2 + i�/2�

�2

, �12�

where �=� cos2�k� /sin�k�. The density of defects can be ob-
tained by integrating the probability of excitations pk over
the Brillouin zone and is given by

n =
1

2�
�

−�

�

pk�t → ��dk =
1

�
�

0

�

pk�t → ��dk . �13�

The parameter � measures the effective rate of driving. It is
�, not � which determines the diabatic ��→0� and adiabatic
��→�� limits.8,42 The gap varies with wave vector k, so
does � and for the modes close to the critical mode �k
=� /2�, ��k2�. We defer the calculational details to the Ap-
pendix.

Let us first analyze the exact expression given in Eq. �12�
in different limits and compare it with pk obtained by direct
numerical integration of the Schrödinger Eq. �11�. It should
be noted that the first expression in the modulus squared
term of Eq. �12� is

��1 − i�/2�
��1 + i�/2�

=
��z�
��z̄�

=
��z�
��z�

,

which is a unit vector with argument −2�1, where �1 is the
argument of ��1+ i� /2�. Similarly the second expression in
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the modulus squared term is also a unit vector with angle
−2�2 and hence modulus squared term in Eq. �12� reduces to

2 + 2 sin�2�2 − 2�1� . �14�

Therefore, the final expression for the probability of excita-
tions is

pk�t → �� =
1

4
�1 − e−2��� � �2 + 2 sin�2�2 − 2�1�� . �15�

Using the properties of � function,43 we have

�1 =
�

2
	�1� + ��

l=0

�
�

2�1 + l�
− tan−1� �

2�1 + l���
�2 =

�

2
	�1

2
� + ��

l=0

�
�

2�1/2 + l�
− tan−1� �

2�1/2 + l��� ,

�16�

where 	�z� is the well-known digamma function.43 The ana-
lytical expression for pk is obtained by substituting �1 and �2
in Eq. �15�. The result obtained by numerical integration of
the Schrödinger equation is presented in Fig. 1 where we
also plot the analytical expression after substituting numeri-
cally obtained values of �1 and �2 in Eq. �15�.

The behavior of pk as a function of the wave vector k can
be explained by making resort to the Landau-Zener interpre-
tation discussed before. For the modes close to k=0 �which
are away from the critical mode k=� /2�, the minimum gap
�k is relatively large or more precisely �k

2��1. Hence, these
modes evolve adiabatically remaining close to the instanta-
neous ground state throughout the quenching. For the critical
mode k=� /2, gap is zero or in other words the relaxation
time �inverse of the gap� is diverging which results to the
complete freezing of dynamics. The system stays in its initial

ground state throughout the evolution which also happens to
be the ground state at t→+� for the present scheme of
quenching. We therefore encounter a situation where the
mode for which instantaneous energy gap is zero has simul-
taneously zero excitation probability which is in contrast to
the forward case where the probability of excitations is unity
for the critical mode. Similarly, for the modes near k=� /2
where the gap is still very small, the system stays closer to
the initial state due to large relaxation time leading to a final
state similar to the ground state. We therefore conclude that
the transition probability vanishes in either limits k→0 and
k→� /2 and a peak is expected at a wave vector k0 lying
somewhere in the middle as shown in Fig. 1.

The instantaneous excitation at an instant t is defined as
the probability of finding the system in the instantaneous
excited eigenstate of the Hamiltonian �10�. The variation in
the instantaneous excitation probability as a function of time
presented in Fig. 2 reflects the explanation presented above.

In the limit of small � �i.e., either � small or k→� /2�, we
get a simplified expression

2�2 − 2�1 = − 2� ln 2. �17�

Substituting Eq. �17� in Eq. �15�, we get the expression for pk
in the small � limit as

pk�t → �� =
1

4
�1 − e−2��� � �2 − 2 sin�2� ln 2�� �18�

which correctly predicts the curve for small � along with the
peak of the curve.

It would be useful to calculate pk in the two extreme
limits, namely, �→0 and �→�. The �→0 limit can be
obtained directly from Eq. �12� whereas the large � limit is
obtained from using the asymptotic expansion of the Gamma
function in Eq. �12�. Thus, we have

/π

k

π α16α2
1

0

0.2

0.4

0.6

0.8

k
0 0.2 0.4 0.6 0.8 1

p

0

0.4

0.8

1.2

0 10.5

τ=1

FIG. 1. Variation in pk vs k for �=1. The data with “+” sign
represent the numerical solution whereas the dashed line corre-
sponds to the analytical expression given in Eq. �12�. As explained
in the text, the region near k=� /2 varies linearly with �
=� cos2 k /sin k whereas that away from k=� /2 as 1 /�2. The inset
also shows the intersection of the two limits at a particular mode k0.
The dotted line in the inset goes as �� and the thin line falls as
1 /16�2.
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FIG. 2. Instantaneous excitation probabilities vs time for three
different modes. The mode k=1.49 is closer to the � /2 mode and
shows a diabatic behavior, i.e., the small gap and large relaxation
time makes the system unable to change appreciably from the initial
state and therefore the instantaneous excitation decreases in magni-
tude for t0 when it is retracing its path. On the other hand, the
system tries to follow the instantaneous ground state for k=1.3
which is in the adiabatic limit and the excitation keeps on increas-
ing until the effect of finite gap persists. Finally, for the mode k
=1.55 which is closest to the critical mode k=� /2, decrease in
instantaneous excitation for t0 is prominently shown.
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pk�t → �� � �� for � → 0

pk�t → �� �
1

16�2 for � → � , �19�

which is also shown in the inset of Fig. 1. As discussed
already, the �→0 behavior is expected near the critical
mode k=� /2 whereas large � behavior can be observed for
the modes k away from � /2. It is also interesting to note that
the exact solution we present here reduces to the adiabatic
transition probability scaling 1 /�2 in the limit of large � as
expected from the quantum mechanical adiabatic
theorem.29,44 This feature is more transparent in Fig. 3 where
the variation in pk with � for two different values of k, one
near k=� /2 and the other away from k=� /2, is shown de-
picting the linear increase with � and decrease as 1 /�2, re-
spectively.

The mode k0 at which the peak in pk occurs is approxi-
mately given by the point of intersection of two limiting
behaviors given in Eq. �15� and is given by

cos2�k0�
sin�k0�

= � 1

16�
�1/31

�
.

The value of � at k0 is given by

��k = k0� = 3 1/16�

which is independent of �. This implies that the maximum
value of pk is independent of � as shown in Fig. 4. A rough
estimate of this value can be obtained from Eq. �18� after
substituting � at k0 and is found to be close to 0.25.

Let us shift our attention to estimating the density of de-
fects n in the final state at t→�. The variation in density of
defects with the rate of quenching � is obtained by integrat-
ing the probability of excitations over the Brillouin zone
given by Eq. �13�. We find that n��� as a function of � shows
a peak at a particular quenching rate �0 and eventually fol-
lows a 1 /� decay for very large �. The 1 /� behavior is
justified by noting the fact that for very large �, k0 shifts
toward � /2, where cos2�k� /sin�k��k2. In this large � limit,
therefore, pk scales as pk� pk��k2� resulting to the Kibble-

Zurek scaling of the defect density given as n�1 /�. Figure
5 shows the variation in density of defects with � in the large
� limit with a 1 /� behavior whereas the inset of Fig. 5
corresponds to the n vs � behavior for the entire range of �
depicting the peak as described above.

An interesting observation is that for the present quench-
ing scheme, the density of defects in the final state is close to
half of that in the forward quenching, i.e., the case where J−
is linearly quenched from −� to �; see Fig. 5. This is be-
cause the maximum value of pk in the reverse case is one
fourth that of the forward case making the area under one of
the peaks to be close to one fourth that of the linear.

It is also illustrative to compare the nonadiabatic transi-
tion probability pk�t→+�� as a function of k for reverse
quenching, forward quenching as well as half quenching, i.e.,
pk�t=0�. Figure 6�a� suggests that the density of defects �area
under the pk vs k curve� does not change appreciably in
reverse quenching as compared to the half quenching. How-
ever, there is a reorganization of pk in the wave-vector space
keeping the density of defects nearly constant. To justify the
above statement, we have doubled the peaks in the reverse
case and appropriately shifted the x axis to match one of its
peaks with pk�t→0� in Fig. 6�b�. The peak is found to match
almost identically to pk�0�. In the passing, we note from Fig.
6�a� that for very large � when only the modes close to the
critical mode contribute to the defects, the density of defects
in the forward case is double that of half quenching.
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(b)

FIG. 3. Variation in log pk vs log � for two different k values.
Fig �a� corresponds to k=1.3, where 1 /�2 behavior is expected. The
dots are the numerically obtained values where as the fitted line has
a slope −2. Fig �b� �inset�, on the other hand is for k=1.56, where pk

increases linearly with �. Once again a log-log plot shows a slope of
1 as expected from theory.
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FIG. 4. The variation in pk for different values of � showing that
the maximum value of pk is independent of �.
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FIG. 5. The main part of the figure shows the variation in den-
sity of defects n for relatively higher values � for reverse quench-
ing. Also plotted is half times the density of defects produced while
forward quenching and it is clear that reverse quenching is close to
half of the linear quenching. Inset shows n vs � for a wider range of
� where a peak is observed for a relatively smaller value of �.
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We now shift our focus to the local von-Neuman entropy
density9 defined by

S = −
1

�
�

0

�

�pk ln pk + �1 − pk�ln�1 − pk��dk �20�

generated in the reverse quenching process. The entropy den-
sity is small for small as well as large values of � and attains
the maximum value at a characteristic time scale. A compari-
son between the entropy generated in the forward �SF� and
the reverse case �SR� is shown in Fig. 7. Although qualita-
tively the curves are similar, an interesting difference is to be
pointed out: SR is less than SF in the limit of small � whereas

SR exceeds SF for large �. This observation can be explained
as follows: the integrand in Eq. �20� is maximum when pk
=0.5. In reverse case, pk always remains less than 0.5, i.e., it
never reaches the maximally disordered state. For the for-
ward case in the small � �nonadiabatic� limit, pk is close to
0.5 in a larger region and hence entropy is large. In other
words, the final state is more locally ordered following a
reverse quenching than a forward quenching in the limit �
→0. On the other hand, for the large � limit in the forward
case, pk increases sharply near the critical mode k=� /2 and
non-negligible only for wave vectors close to � /2 resulting
to relatively smaller entropy density.

In a recent work, Barankov and Polkovnikov45 have pro-
posed the concept of diagonal entropy given by

Sd = − �
n

�nn ln �nn,

where �nn is the nth diagonal element of the density matrix
describing the system. One can interpolate it to obtain a
time-dependent diagonal entropy, where �nn�t� are the diag-
onal elements of the density matrix in the instantaneous
eigenbasis. In our case, �11�t�=1− pk�t� and �22�t�= pk�t�,
where the excitations for each mode k are calculated in the
instantaneous eigenbasis. In Fig. 8, we compare the evolu-
tion of the diagonal entropy in the reverse and forward cases.
We find that in the forward case the diagonal entropy in-
creases monotonically with time and eventually saturates to
the asymptotic value corresponding to the von-Neuman en-
tropy whereas in the reverse case a dip is observed immedi-
ately after the critical point.

The experimental realization of the Kitaev model has
been proposed recently in systems of ultracold atoms and
molecules trapped in optical lattices.31 In this proposal, each
of the couplings can be independently tuned using different
microwave radiations. Once this is established, one can ex-
perimentally verify the reverse quenching case by looking at
the defect density which actually corresponds to the number
of bosons in the wrong spin state. It is also possible to in-
vestigate the spatial correlation function of the operator
ibnan+r, where an and bn are Majorana fermions as defined
before.16 This spatial correlation function depends on pk
which we have already obtained for the reverse case. Then
the evolution of defect correlations can be detected by spatial
noise correlation measurements as discussed in Ref. 46.
Also, qualitative testing of reverse quenching can be done by
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is the area under the pk vs k curve, is approximately equal to the
defect generated at t=0. To highlight this, we have doubled pk for
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varying a magnetic field in spin-gap dimer compounds such
as BaCuSi2O6 which undergo a singlet-triplet quantum-phase
transition at a critical field Bc. Our results suggest that the
density of defects in the reverse case which corresponds to
residual singlets obtained by magnetization measurement
would be close to half of the forward case.

IV. CONCLUSIONS

In conclusion, we study the dynamics of a one-
dimensional Kitaev model using a reverse quenching
scheme, by increasing the anisotropy parameter J− linearly
up to its quantum critical point at t=0 following which J− is
decreased at the same rate to bring it back to its initial value.
We provide an exact solution of the Schrödinger equation
and estimate the density of defects and the local entropy
density in the final state. Comparison of the reverse quench-
ing results to those of the corresponding forward quenching
case leads to a few interesting observations. In the reverse
case, the Landau-Zener transition probability pk vanishes for
the critical mode k=� /2 at which the instantaneous energy
gap vanishes at t=0 whereas pk is maximum for the same
mode in the forward case.16 We show that pk increases lin-
early with � in small � �diabatic� limit whereas our result
retrieves the expected 1 /�2 fall of pk in the large � �adia-
batic� limit as predicted from quantum-mechanical adiabatic
theorem; � is the effective rate parameter as defined in the
text. Interestingly, the density of defects in the reverse case is
close to half that of forward quenching. We have also com-
pared the half quenching case with reverse quenching. A
close inspection of pk as a function of k, as shown in Fig. 6
suggests that in the reverse case, pk gets reorganized in
wave-vector space with a peak at k=k0�� /2 keeping the
density of defects approximately same as half quenching
case. The value of this k0 shifts to � /2 for �→�. We also
show that the maximum value of the transition probability is
independent of �. The local entropy density of the final state
and time evolution of the diagonal entropy density are also
explored. The possibility of experimental realization of the
reverse quenching scheme using atoms trapped on optical
lattices has also been pointed out.
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APPENDIX: DETAILS OF EXACT CALCULATION

We present here an outline of the calculational details
leading to an exact solution for the reverse quenching case
generalizing earlier studies8,28,29 to the present case. Let us
first consider a general Hamiltonian in the basis �1� and �2� as
shown below

H = � 
1 �

�� 
2,
� ,

where 
1 and 
2 are the two bare energy levels �diagonal
elements� varying as �t /2� and −t /2�, respectively �see Eq.
�10� for comparison�. If �	�t��=c1�t��1�+c2�t��2�, then one
can write down the Schrödinger equation for c1�t� and c2�t�.
But before that we redefine c1�t� and c2�t� as follows:

c1�t� = c̃1�t�e−i�−�
t 
1�dt�

c2�t� = c̃2�t�e−i�−�
t 
2�dt�. �A1�

The Schrödinger equation for c̃2 is

i
�

�t
c̃2�t� = �c̃1�t�e−i�−�

t �
1�t��−
2�t���dt�. �A2�

One more transformation of the form

c̃2�t� = e−i/2�−�
t �
1−
2�dt�U2�t� �A3�

helps us to write the equation for c̃2 in terms of U2 in the
following form:

�2

�t2U2�t� + ��2 −
i

2�
+

t2

4�2�U2�t� = 0, �A4�

where we have substituted 
1−
2= t /�. Now redefining a
new variable

z =
t

�
e−i�/4

one gets,

�2

�z2U2�z� + �m +
1

2
−

z2

4
�U2�z� = 0, �A5�

where m= i�2�. By all these transformations, we are able to
recast the Schrödinger equation in the form of Weber differ-
ential equation47 whose solutions are linear combination of
well-known Weber functions D−m−1�iz� and D−m−1�−iz�, i.e.,

U2�z� = aD−m−1�iz� + bD−m−1�− iz� �A6�

or going back to the notation of c̃1�t� and c̃2�t�,

�	�t�� =
i

�
��t −

it

2�
��aD−m−1�iz� + bD−m−1�− iz���1�

+ �aD−m−1�iz� + bD−m−1�− iz���2� . �A7�

But the initial condition demands that at t→−�, �	�t��
��1� forcing U2�z� to be a function of only D−m−1�−iz� as
D−m−1�−iz� goes to zero at t→−� but D−m−1�iz� does not as
can be seen from the following asymptotic form of Weber
functions
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Dn�z� � e−1/4z2
zn −

2�

��− n�
en�ire1/4z2

z−n−1

for
�r

4
� arg�z� �

5�r

4
, �A8�

where r is either 1 or −1, and

Dn�z� � e−1/4z2
zn for �arg�z�� �

3�

4
. �A9�

Therefore, a=0 and the form of b can be obtained by these
asymptotic forms along with the initial condition, which
gives b=��e−�/4�2�.

Hence, Eq. �A7�, after using the derivative of Weber func-
tion, is

�	�t � 0�� = e−�/4�2�ei3�/4��m + 1�D−m−2�− iz�

− izD−m−1�− iz���1� + ��e−�/4�2�D−m−1�− iz��2� .

At t=0, the wave function is

�	�t = 0�� = e−�/4�2�ei3�/4
�2−m/2

��1/2 + m/2�
�1�

+ ��e−�/4�2��

2

2−m/2

��1 + m/2�
�2� �A10�

which is obtained by using the following property:

lim
s→0

Dm�s� = 2m/2
�

��1/2 − m/2�
+ O�s� .

The wave function at t0, which has the effect of reversing,
should match with the wave function for t�0 at t=0. In the
reverse case, the parameters m and z for t0 are redefined as

m� = − i�2� and z� =
− it
�

e−i�/4. �A11�

With these redefined k� and z�, starting from Eq. �A7�, the
wave function for t�0 is matched with that of t0 at t=0 to
obtain coefficients a and b,

a =
1

2
��e−�/4�2�2−m � ���1 − m/2�

��1 + m/2�
− i

��1/2 − m/2�
�1/2 + m/2 �

b =
1

2
��e−�/4�2�2−m � ���1 − m/2�

��1 + m/2�
+ i

��1/2 − m/2�
�1/2 + m/2 � .

We know that at t→�, the excited state is �2� and hence the
coefficient �c2�2 defines the excitation probability and is equal
to

c2�t → �� � lim
z→�

aD−m�−1�iz�� + bD−m�−1�− iz�� .

�A12�

Once again, using the expression for b and asymptotic ex-
pansion of Weber function in the definition of �c2�t→���2
with properly identifying � and � for a Kitaev model, we get
Eq. �12�.
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